5,609 research outputs found

    Aggregatibacter actinomycetemcomitans leukotoxin induces cytosol acidification in LFA-1 expressing immune cells

    Get PDF
    Studies have suggested that Aggregatibacter actinomycetemcomitans leukotoxin (LtxA) kills human lymphocyte function-associated antigen 1 (LFA-1; CD11a/CD18)-bearing immune cells through a lysosomal-mediated mechanism. Lysosomes are membrane-bound cellular organelles that contain an array of acid hydrolases that are capable of breaking down biomolecules. The lysosomal membrane bilayer confines the pH-sensitive enzymes within an optimal acidic (pH 4.8) environment thereby protecting the slightly basic cytosol (pH 6.8-7.5). In the current study, we have probed the effect of LtxA-induced cytolysis on lysosomal integrity in two different K562 erythroleukemia cell lines. K562-puro/LFA-1 cells were stably transfected with CD11a and CD18 cDNA to express LFA-1 on the cell surface while K562-puro, which does not express LFA-1, served as a control. Following treatment with 100 ng ml-1 LtxA cells were analyzed by live cell imaging in conjunction with time-lapse confocal microscopy and by flow cytometry. Using a pH-sensitive indicator (pHrodo®) we demonstrated that the toxin causes a decrease in the intracellular pH in K562-puro/LFA-1 cells that is noticeable within the first 15 min of treatment. This process correlated with the disappearance of lysosomes in the cytosol as determined by both acridine orange and LysoTracker® Red DND-99 staining. These changes were not observed in K562-puro cells or when heat inactivated toxin was added to K562-puro/LFA-1. Our results suggest that LtxA induces lysosomal damage, cytosol acidification, which is followed by cell death in K562-puro/LFA-1 cells. © 2016 John Wiley & Sons A/S

    Aggregatibacter Actinomycetemcomitans Leukotoxin Causes Activation of Lymphocyte Function-Associated Antigen 1

    Get PDF
    Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin α L /β 2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic α L domain and a yellow fluorescent protein-tagged β 2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both α L and β 2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the α L and β 2 subunits (K d = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin α M , α X , and β 3 subunits (K d = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of α L and β 2 show that LtxA binds membrane-proximal domain of α L and intermediate domain of β 2 . © 2018 John Wiley & Sons Lt

    InsIghts Into the mechanIsm of natural terpenoIds as NF-κB InhIBItors: an overvIew on theIr antIcancer potentIal

    No full text
    The transcription factor, nuclear factor kappa B (NF-kB) is one of the principal inducible protein in mammals known to control the gene expression in many critical physiological responses such as oxidative stress, inflammation etc. and has been shown to play an important role in the pathogenesis of cancer. Terpenoids are major constituents present in nutritionally used fruits, vegetables and different spices which possess various pharmacological action including anticancer activity. Various terpenoids, viz. monoterpenoids, sesquiterpenoids, diterpenoids, sesterterpenoids, triterpenoids, tetraterpenoids and polyterpenoids inhibit NF-kB signaling pathway through IkB phosphorylation, DNA binding, p65 translocation etc. Keeping in mind these facts, the present review revealed the anti-cancer potential of naturally occurring terpenoids highlighting their mechanism of NF-kB inhibition. This review also focuses on some of the naturally occurring terpenoids belonging to various chemical categories with potential inhibitory effects on NF-kB and their role in the treatment of cancer

    Open-Retrieval Conversational Question Answering

    Full text link
    Conversational search is one of the ultimate goals of information retrieval. Recent research approaches conversational search by simplified settings of response ranking and conversational question answering, where an answer is either selected from a given candidate set or extracted from a given passage. These simplifications neglect the fundamental role of retrieval in conversational search. To address this limitation, we introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers, as a further step towards building functional conversational search systems. We create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers. Our extensive experiments on OR-QuAC demonstrate that a learnable retriever is crucial for ORConvQA. We further show that our system can make a substantial improvement when we enable history modeling in all system components. Moreover, we show that the reranker component contributes to the model performance by providing a regularization effect. Finally, further in-depth analyses are performed to provide new insights into ORConvQA.Comment: Accepted to SIGIR'2

    In vitro selection of yellow passion fruit genotypes for resistance to Fusarium vascular wilt.

    Get PDF
    Fusarium vascular wilt (caused by Fusarium oxysporum f. sp. passiflorae) is a limiting factor in the cultivation of yellow passion fruit (Passiflora edulis). Since there is no effective and economically viable control available, development of resistant or at least tolerant cultivars are in demand. A number of procedures have been used for the initial selection of plant genotypes resistant to various fungal pathogens by means of a fungal culture filtrate or purified toxin. In this study, seeds and in vitro-grown plantlets of passion fruit were screened with different concentrations of either Fusarium oxysporum f. sp. passiflorae (FOP) culture filtrate (0, 20, 30, 40 or 50%, v/v) or fusaric acid (0.10, 0.20, 0.30 or 0.40 mM) supplemented in Murashige and Skoog (MS) basal media. Subsequently, selected plants were inoculated with a conidial suspension of FOP to assess correlation between in vivo and in vitro responses. In vitro sensitivity to the selective agents and the resistance response to the pathogen were also compared. Root growth was markedly influenced by FA, culture filtrate, and conidial suspension culture treatments. Observations indicated that roots were primary targets for attack by F. oxysporum. Successful in vitro selection of resistant genotypes by both FA and culture filtrate treatments suggested that this strategy was viable for accelerating breeding of passion fruit for resistance to the Fusarium vascular wilt

    Aggregatibacter Actinomycetemcomitans LtxA Hijacks Endocytic Trafficking Pathways in Human Lymphocytes

    Get PDF
    Leukotoxin (LtxA), from oral pathogen Aggregatibacter actinomycetemcomitans, is a secreted membrane-damaging protein. LtxA is internalized by β2 integrin LFA-1 (CD11a/CD18)-expressing leukocytes and ultimately causes cell death; however, toxin localization in the host cell is poorly understood and these studies fill this void. We investigated LtxA trafficking using multi-fluor confocal imaging, flow cytometry and Rab5a knockdown in human T lymphocyte Jurkat cells. Planar lipid bilayers were used to characterize LtxA pore‐forming activity at different pHs. Our results demonstrate that the LtxA/LFA-1 complex gains access to the cytosol of Jurkat cells without evidence of plasma membrane damage, utilizing dynamin-dependent and presumably clathrin-independent mechanisms. Upon internalization, LtxA follows the LFA‐1 endocytic trafficking pathways, as identified by co-localization experiments with endosomal and lysosomal markers (Rab5, Rab11A, Rab7, and Lamp1) and CD11a. Knockdown of Rab5a resulted in the loss of susceptibility of Jurkat cells to LtxA cytotoxicity, suggesting that late events of LtxA endocytic trafficking are required for toxicity. Toxin trafficking via the degradative endocytic pathway may culminate in the delivery of the protein to lysosomes or its accumulation in Rab11A‐dependent recycling endosomes. The ability of LtxA to form pores at acidic pH may result in permeabilization of the endosomal and lysosomal membranes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
    corecore